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Dislocations and Internal Length Measurement in 
Continnized Crystals. II. Closed Teleparallelism 
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The Burgers field responsible for dislocations in a continuized crystal is repre- 
sented by the torsion tensor of a teleparaUel connection, metric with respect to 
the internal length measurement metric tensor. Lattice lines in a continuized 
dislocated monocrystal are represented by geodesics of the teleparaUel connec- 
tion, and the internal length measurement along these geodesics is analyzed. The 
closed teleparallelism responsible for uniformly dense distributions of disloca- 
tions is discussed, and equations describing slip surfaces for such distributions of 
dislocations are formulated. The Galilei-like character of the geometry describ- 
ing uniformly dense distributions of dislocations is pointed out. 

1. INTRODUCTION 

The existence of many dislocations breaks the long-range order of a 
crystalline solid in a special manner, manifesting itself in the existence of 
different short-range orders in macroscopically small neighborhoods of 
different points of the body. In a continuous limit, called the continuized 
crystal (Kr6ner, 1984, 1986; Trz~sowski, 1993), the distribution of these 
short-range orders is defined by a triple (~, G, g), where �9 = (Ea) is a 
moving frame globally defined on the body & identified with its distin- 
guished reference configuration 9~ c E a, an open and connected subset of 
the three-dimensional Euclidean point space E 3 (Trz~sowski, 1993), 
G c SO(3) is a group of rotations describing material symmetries of the 
considered macroscopically homogeneous crystalline solid (Trz~sowski, 
1994, Section 2), and g is a metric tensor with respect to which the moving 
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frame �9 is orthonormal, i.e., 

(Ea, Eb)g = 6ab (1) 

where ( �9 �9 )g denotes the scalar product on the material Riemannian space 
(~, g). This metric tensor represents the property of the dislocated crys- 
talline solid that dislocations have no influence on the local metric proper- 
ties of a crystal structure of the body (Kr6ner, 1985) and, at the same time, 
this metric tensor is responsible for point defects created by these disloca- 
tions (Trz~sowski, 1994). The moving frame dp defines a system of the three 
indendent congruences of curves--trajectories of the vector fields Ea, 
a = 1, 2, 3. The tangents of these trajectories constitute at each point of the 
body a triad of the so-called local crystal lographic directions. The material 
symmetry group G defines, at each point of the body, the rotational 
equivalence of the triads. This local rotationa 1 uncertainty in selecting the 
triad represents the existence of local material symmetries in the con- 
tinuized dislocated crystal. Moreover, the base vector fields Ea define 
locally scales of an internal  length m e a s u r e m e n t  along (local) crystallo- 
graphic directions. Consequently, for a continuized dislocated monocrystal, 
trajectories of the vector fields Ea can be interpreted as lattice lines in this 
crystal (Bilby et al., 1958). However, these vector fields cannot be inter- 
preted (even locally and in a dislocated monocrystal), in contradiction to 
base vectors of a Bravais lattice, as those defining translational material 
symmetries of the continuized crystal. This is because in a continuized 
crystal translational symmetries of a discrete crystal structure are lost, and 
only its rotational symmetries (represented by the group G) are preserved 
(Trz~sowski, 1993). 

The long-range distortion of a crystalline solid material structure due 
to dislocations can be described by means of the so-called Burgers  f i e ld  
z.  = (z ~) defined by 

1,, ~b E ~ (2a) "ca = d E a  = ~ z  be,L, A 

Z~b,. = -- C'[c, ( E " ,  E b ) = 6'~ (2b) 

where q)* = (E") is the moving coframe dual to (I), and 

[ E , ,  Eb]  = C~jb E,.  ( 3 )  

where [u ,  v] = u o v - v o u is the commutator product (bracket) of vector 
fields u and v considered as first-order differential operators (Trz~sowski, 
1993). The Hodge dual fields ~" of the 2-forms z a, i.e., 

O~ a .~. ,.C a = o~baEb 

E,, = 6abE b (4) 
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where �9 denotes the Hodge star operator on (~,  g) (Von Westenholz, 
1978), univocally define the dislocation density tensor 0t of the form 
(Trz~sowski, 1994) 

O~ = O~ a b E  a ( ~  E b 

O~ ba -~ �89 T a c d e  crib (5) 

where e abc ~ E abc denotes (in the base q~) the permutation symbol. Equiva- 
lently, 

da a 
7~abc : O~paepbc = e b c d 7  - -  t[b(~ c] (6) 

where 

7 ab = ~ ~b) (7) 

t a = T bba ~ eab  c ~X bc 

On the other hand, if the considered body is a three-dimensional connected 
manifold, there exists a one-to-one correspondence between globally 
defined moving frames do = (Ea) and the so-called teleparallel covariant 
derivatives V* = (F~c[~]). This correspondence is defined by the condition 
of covariant constancy of vector fields Ea, a = 1, 2, 3: 

V*E~ = 0 (8) 

and by the demand that the curvature tensor of V* vanishes. The local 
metric properties of a continuized dislocated crystal [see the commentary 
following equation (1)] are then represented by the condition of V%covari- 
ant constancy of the internal length measurement metric tensor: 

V*g = 0 (9) 

and it is a property of g invariant under its global rescaling defined by 

--, e L  = (E~,L"b) (10) 

L = ]]L"b H~GL+(3) 
where GL§ denotes the group of all real 3 x 3 matrices with positive 
determinant. Since for 

E. eA~A, E" = = e A  d X  A 

(11) 

we have 

= e aeeA (12) 
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Therefore, the torsion tensor ~, of the teleparallel connection has the form 

% = E~ |  = S"bcEa | 1 7 4  c 
(13) 

1 o {, [ o ]  S a b c  = 2,c be = A e e C] 

and To is invariant under the rescaling (10): %L = %. Thus, the tensor % 
can be interpreted as a representation of the dislocation density tensor 
invariant with respect to the global rescaling of the internal length measure- 
ment metric tensor. 

It follows from the condition (8) that trajectories of the vector fields Ea 
are V*-geodesics. Moreover, every V*-geodesic (henceforth called a O- 
geodesic) is an integral curve of a certain V*-parallel (henceforth called 
O-parallel) vector field, i.e., a field v such that 

V*v = 0 (14a) 

i.e., 

v = v'E~, v" = const (14b) 

We see that lattice lines in a continuized dislocated monocrystal can be 
considered as O-geodesics located in the Riemannian material space (~, g). 
Consequently, an internal length measurement along these lattice lines can 
be considered in terms of differences between O-geodesics and g-geodesics. 
In the paper, these differences are described in terms of the dislocation 
density tensor at (Section 2). Moreover, transformations preserving the 
internal length measurement along lattice lines are discussed (Section 2), 
and uniformly dense distributions of dislocations (Trzgsowski, 1987) are 
considered (Sections 3 and 4). 

2. INTERNAL LENGTH MEASUREMENT ALONG LATTICE LINES 

It is known that O-geodesics are uniquely determined by the symmetric 
part V=(FAc)  of the teleparallel covariant derivative VO=(F~c[O]) 
defined by 

9 = V ~ - 
( 1 5 )  

= r c[O] - 

where F~c[O] is given by equation (12), and [see equations (11) and (13)] 

~.  = dA |  = S A s c ~ A  | 1 7 4  c 

, cA  = e A , c a  = I A ~,c s c  d X  B ^ d X  c (16) 
a 
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where [l] = cm in the cgs units system, and the so-called geometric frame 
reference X = ( X  A) ([X A] =[dX A] =[l], [On] = [l-l]) has been used. Let 
x A ( z )  be a V-geodesic. Denote by v A = d X A / d r  the tangent to XA(z) .  If  z is 
an affine parameter on the geodesic, then v A satisfies the geodesic equation 
(Schouten, 1954): 

dv  A o 
- -  + F ~ c v %  c = 0 
dr 

(17) 
[v A] = [1], [zl = [dr] = [/1 

The affine geodesic parameter ~: offers a means of defining intervals along 
a geodesic that is independent of a metric. On the other hand, the internal 
length measurement metric tensor g (Section 1) defines the proper interval 
for all curves on the manifold ~ .  It seems natural, therefore, to require that 
the two be in agreement along V-geodesics. If we denote the g-metric 
interval by s, then [see equations (1) and (11)] 

ds = (gABVAO B) 1/2 dz (18a) 
a b 

g a s  = eAes6ab, [s] = [/] (18b) 

and the condition for agreement between two intervals is (in differential 
form) (Bradfield, 1990) 

d2s 
dr--5 = 0 (19) 

which is equivalent to 

where a, b are constants. 
Let us denote 

s = a z  + b  
(20) 

[a] = [1 ] ,  [8] = [11 

Q c A s  = (?cgaB (21) 

Then [see equations (12), (15), (16), and (18b)] 

QcAB = z (amc,  z,~sc = gAOZ~ 
(22) 

"CABC = eBCDYDA --  t[sgcla = - - Z a c s ,  yDB = g s c Y  p c  

where we have denoted [see equations (5)-(7)] 

a s s  = I_a _ c o s  (23a) "~ CD ~ , ~A B c  ~ eBCD ~DA 

= = 1, _cAs (23b) ~AB ot(AB) ~[AB] .~Ce  

t a = zsBa = e a s c  ~ s c  (23c) 
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and 

eABC = g - 1/2 e ABC, eABC = g I/2eABC 

(24) 
g = detHg~B I[ = e ~  2, e .  = detlLe~]l > 0  

where eABC= e,~BC denotes the permutation symbol: It follows from equa- 
tions (21) and (22) that the connection coefficients F~c can be decomposed 
as (Schouten, 1954) 

r~c = r~c[g]  + G c  A 
(25) 

KBc A = l gAD('C BD c + "CCDB) 

where V ~ = (F~c[g]) denotes the Levi-Civita covariant derivative corre- 
sponding to the metric tensor g. Using this connection decomposition, the 
geodesic equation (17), and (18), we can rewrite the condition (19) in the 
form (Bradfield, 1990) 

Q ABC l) "IV BY C = 0 (26) 

It is easy to see that the tensor field QcAB defined by equations (22)-(24) 
fulfills the condition (26). Moreover, 

QcAB = 0 iff ~ABC = eCBA (27) 

We see, that although *-geodesics are g-geodesics only if the condition 
(27) is fulfilled, nevertheless the metric line element of the internal length 
measurement along a *-geodesic is equivalent to the affine line element of 
this geodesic [equation (20)]. Thus, an affine transformation of the telepar- 
allel space (~, V*) that is a diffeomorphism of ~ preserving *-geodesics 
and their affine parameters preserves the property of lattice lines to be 
*-geodesics as well as [up to the affine transformation (20)] the internal 
length measurement along these lines. A local affine transformation (called 
also an infinitesimal affine motion) X A - ~ X A +  ev A of a space with the 
covariant derivative V =(FAc) is defined by 

L Fac = 0 (28) 
*r 

where L denotes the Lie derivative operator. If V = V*, * =  (E~), the 
condition (28) is equivalent to [see equations (11) and (12)] (Yano, 1958) 

L e A = cb~e a, Cb. = const (29) 
V a 

If all the constants c~ are zero, that is, if 

L e A = 0 (30) 
V a 
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the local affine transformation is said to be particular. The maximal order 
of a group Gr of particular affine transformations is r = n = 3 (n = 3 is the 
dimension of the body manifold ~),  and such a group exists iff [see (13)] 
(Yano, 1958) 

V*~ = 0, i.e., Zabc = const (31) 

Note that the maximal order of a group Gr of all affine transformations is 
r = n(n + 1) = 12, and this group exists iff the space is Euclidean, the group 
being a general affine group (Yano, 1958). Namely, in this case we can take 
a rectilinear coordinate system (~") such that for v = va8,, ~a = 0 / ~  a, the 
condition (29) gives 

V a : Cab~ b "~- C a (32) 

where c " =  const, which means that the particular local affine transforma- 
tion is then a translation, and thus the general local particular affine 
transformation can be considered as a local generalized translation [in the 
teleparallel space (~,  V*)]. A teleparallelism fulfilling the condition (31) is 
said to be closed, and the corresponding distribution of dislocations is said 
to be uniformly dense (Trz~sowski, 1987). In this case the moving frame 
@ = (E,) spans a three-dimensional real Lie algebra g[@] of @-parallel 
vector fields defined by (14). The Lie multiplication [ . , . ]  of this Lie 
algebra is defined by the commutation rules (3) with C~b = --Z",b = const 
[see equation (2b)]. Moreover, it follows from equation (6) that the Jacobi 
identity (e.g., Von Westenholz, 1978) of the Lie algebra g[qb] reduces to the 
condition 

]:abt b : 0 (33) 

If the teleparallelism is closed, the Ricci tensor RaB[g] of the Levi-Civ- 
ita covariant derivative V g = [F~c[g]) can be computed explicitly in terms 
of the dislocation density tensor a [equation~(5)]. Namely, it follows from 
th e decomposition (25) that the Ricci tensor RAB of the covariant derivative 
V = (F~c) has the form (Schouten, 1954) 

t I~CD~-'/g ~ - -  1 RAB = RcAB c = RAB[g] + zCAB -- ~ "C'ABD ~TAB (34) 

where RABc ~ are components of the curvature tensor of the covariant 
derivative V, and we have denoted 

CAB = "C DcA "~ CBD 

tABO = 2Z~AmD + tcBgmo (35) 

TAB = V~AB)C tc  + zCo~ZA)C o + �89 c 

"CAB C = g A D T D B c ,  TAB C = g C D T A B  D 
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If the teleparallelism is closed, then (Yano, 1958) 

R A B  1 ~--- ~CAB 

and from equations (34)-(36) we obtain that 

Ran[g ] VgC ~.AB C 1 = + ~r 

CD 1 C 
Y'AB c = "~D(Aen) + igant 

1 ~ + C  , D  
a n n  = g a n T C c  - -  7 C a ~ c B  - ~ c o ~ n .  ~ a) 

where [see equations (23) and (24)] 

Y A h  = g n c 7  a c ,  Yah = g a c y C n  

]1 CC = g a b  ]) An, ea BC = g a D  e o n c  

(36) 

(37) 

(38) 

3. U N I F O R M L Y  DENSE D I S TR I BU TI ON S  OF D I S L O C A T I O N S  

Let #o denote the Riemannian volume 3-form defined by the internal 
length measurement metric tensor g [see designations (24)]: 

# .  = ~ d X  I ^ d X  2 ^ d X  3 = E ~ ^ E 2 ^ E 3 (39) 

It can be shown that for a closed teleparallelism [equation (31)] 

~'% = 0 (40a) 

V#. = 0 (40b) 

where ~7 is defined by equations (15) and (16), and thus [see (23)] 

V ' t  = O, ~' = Y~n~A |  (41a) 

V t  = O, t = ta d X  A (41b) 

and [equation (33)] 

where 

7 t  = 0 
(42) 

t = t " E ~ ,  t a = f~abt b 

~ab a b AB ~)ba 
= e A e n ~  = = const 

I a = eaAt a = const 

From equation (41b) we obtain that 

d t  = 0 

(43) 

(44) 
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i.e., at least locally, one has 

t = dq~ (45) 

where q~ is a scalar. Let us consider the following representation of  the 
tensor 7 and the covector t (Trz~sowski, 1994, Section 3): 

7 = 2ae, |  t =/ . re  3 
(46) 

(ca, eb)g = (~ab, ( e  3, ea ) = 63 

The conditions (33) and (43) mean that 

2 ~ = const, # = const, Z3/1 = 0 (47) 

I f  t ~ 0 and 7 ~ 0, then the conditions (42) and (47) mean that rank 7 = s. 
1 -< s < 2, and Z 3 = 0, kt 5 ~ 0. Moreover,  it follows from the condition (41a) 
that then for every point P 6 ~  there exists its coordinate neighborhood 
with coordinates X = (X a) = (x ~, zk), 1 < ~ < s, s < k < 3, such that the 
matrix II   (x)II of  7 components has the following form: 

II A ( x)  ll =* II o ~ (48) 

with llT~a(x)11, x --(x=),  nondegenerate, and the number of  coordinates x ~ 
being independent of  P (Rendal,  1992). 

I f  rank 7 = 3, then from condition (42) it follows that 

t = 0 ( 4 9 )  

and the condition (41a) means that V is a (symmetric) metric connection. 
In this case [see equations (5)-(7)]  

Zab,. = eb,.dTd~, ~ b  = 7~b (50) 

It follows from the Bianchi classification of  three-dimensional real Lie 
algebras (Barut and R~czka, 1977; Dubrovin et al., 1979) that the only Lie 
algebras g[~] for which V is a metric connection are those of  three-dimen- 
sional Euclidean rotations type (g[Og]-so(3),  sign T = ( - , - , - ) )  or 
three-dimensional Lorentz rotations type ( g [ ~ ] ~ s o ( 2 , 1 ) ,  s i g n 7 =  
( + ,  + ,  - ) ) .  Let us introduce the metric tensor g, by 

g~ = - d o  i T -  ~ = g(,)~bE ~ | E b 

g(o ab "= --El07 ab, g(oabg(obc = 6~ (51) 

[g~] = [P],  [/0] = [/] 

where l0 is a constant, [/] = cm in the cgs units system, c = 1 if g[~] ~ so(3), 
and c = - 1 if g[~] --- so(2,  1). For  example, if the commutat ion rules (3) 
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are defined by 

[El, E2] = ~.E3, 

then 

[E2, E3] = E2E1, [E3, El] = s 
(52) 

,~ > o, [,q = [ l - ' 1  

7 ~b = _ 2E~/% lo = 2 - 
(53) 

g(,~ab = r/ab, II~~ = diag( 1, 1, E) 

It can be shown (Wolf, 1972) that if ~ = (E~) is a globally defined moving 
frame, g~ is a Riemannian (e = 1) or pseudo-Riemannian (E = - 1 )  metric 
tensor on a connected manifold &, and 

(E~, Eb) & = g(c~b = const (54) 

then the following conditions are equivalent: 

(a) "a r~,. = r~c[gA. 
(b) g,-geodesics are ~-geodesics with the same affine parameters. 
(c) E, are Killing vectors on (~, gc). 

Here Fg,.[g,] are Christoffel symbols corresponding to g,. The conditions 
(54) and (c) mean that vector fields E~ are the so-called translations in 
(~, g,), i.e., infinitesimal isometries under which every point is moved over 
the same distance (Yano, 1958). If E = 1, then the condition (b) is equiva- 
lent to QcAB = 0 in equation (21) [cf. equation (27)] and generalizes the 
known theorem that each translation-invariant metric on R" is consistent 
with the Euclidean parallelism (Wolf, 1972). Therefore, in this case (and 
only in this case), the property of an ideal (that is Euclidean) Bravais lattice 
that lattice lines are geodesics of the Euclidean parallelism is locally 
reconstructed in a continuized dislocated monocrystal. Both Lie algebras 
g[~] corresponding to the metric tensors g,, e = 1 or E = - 1, describe screw 
dislocations (Trz~sowski, 1994, Section 3). Namely, g[~] =so(3) (corre- 
sponding to gl) describes a distribution of screw dislocations of the same 
type (right-handed or left-handed), while g[ep] ~ so(2, 1) (corresponding to 
g_ i ) admits the existence of screw dislocations with opposite local Burgers 
vectors. These two types of continuous distributions of dislocations are 
called orthogonal (Euclidean or Lorentzian type) (Trz~sowski and 
Slawianowski, 1990). Note that the Lie algebra g[~] ---so(3) may be also 
interpreted as describing a continuous counterpart of discrete disclinations 
(TrzCsowski, 1993). However, its "screw interpretation" seems more appro- 
priate. This is because, in the continuized crystal approximation, disclina- 
tions are rather a type of a distribution of dislocations than a separate kind 
of line defect (Trzgsowski, 1993). 
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The case 

~, = 0, t # 0 (55) 

describes a distribution of edge dislocations (and only edge) (Trz~sowski, 
1994, Section 3). In this case 

T, abc = - -  lib ~ c a] (56) 
~X ab I . cab ~ ba 

= ~ tce  = - -  

For example, if [cf. equations (46) and (47)] 

t = #E s, i.e., ta = #33 (57) 

then the corresponding Lie algebra ~[@] is defined by the following 
commutation rules: 

[E 1 , E2] = 0, [E3, E2] = teE2, [E3, E,] = t~E l 

x = / , / 2  > 0 (58) 

It follows from (37) that, in the case (55), the Riemannian material 
space (~,  g) has a constant scalar curvature K, [K] = [l-2], and 

RA~[g] = c~gAB (59a) 

g t  A c~ = 5VA = 2K = const (59b) 

If  the condition (49) is fulfilled, then 

R A B [ g  ] = VgC7D( A e B ) CD + �89 AB~ CC - -  ~ CA ~I CB) (60) 

and the scalar curvature K is given by 

1 K=gR 
(61) 

R = g A s R A A g ]  = �89 % ) 2  _ ~AB~] 

It follows from equations (46), (47), and (61) that 

R = 2 1 ~ .  2 -+- 2123 "}- ~ 2 ~ 3  ~__ const (62) 

In particular, if rank y = 3 and the tensor ~, is defined by (53), then 

1 +2E 
K -  6 22, [2] = [/-1] (63) 

and for E = 1 

RAS[g ] = )~2gas, K = �89 z (64) 

However, although the scalar curvature K defined by equations (61) and 
(62) is a constant, the Ricci tensor cannot be in general reduced to the form 
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(59a), and (~, g) is not a flat space even in the case K = 0. For example, if 
g[O] is isomorphic with the so-called Weyl Lie algebra defined by 

[E,, E21 = 0, [E2, E3] = 2E., [E3, El] = 0 (65) 

then I1 o 11 = ~ diag( - 1, 0, 0), t = 0, and from equation (62) we obtain that 
R = 0, but (~, g) is not a flat space. 

4. SLIP SURFACES 

Let us consider a local Burgers vector b defined by (Trz~sowski, 1994, 
Section 3) 

pb = la, i.e., pb A = IB~ BA 
(66) 

l : IAC~A, IA = gA~l B, IAIA = 1 

where 1 denotes the unit vector field tangent to a dislocation line, and 
p, [p] = [l-2], is the scalar density of dislocations (indendent of the choice 
of I). The plane re(l, b) containing vectors ! and b is interpreted as a local 
slip plane. If  the teleparallelism is closed, then it follows from equations 
(5)-(7) and (42) that 

bAG = 0 (67) 

and thus, if additionally 

lAG = 0 (68) 

the vector field t is then normal to the local slip plane at each point of the 
body. The condition (45) means then that surfaces q~ = const are the 
so-called slip surfaces. For example, it follows from equations (45) and (59) 
that for the uniformly dense distribution of edge dislocations defined by 
(55), slip surfaces are defined by 

Ag~p = 4K 
(69) 

K = const, [K] = [l-2] 

where A~ is the Laplace-Beltrami operator on (N, g): 

Agq9 = ganVg Vg q9 = g -1/20 A (g I/2gABOB(49 ) (70) 

Note that from equations (23) and (66) it follows that in the case (55) 

_ l,  t .cBa (71) P bA - ~'c'n~ 

Thus, the condition (67) is then an identity and, independently of the 
choice of the dislocation line fulfilling the condition (68), the following 
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relation is valid: 

pb =/~/2 = const 
(72) 

b 2 = bab A, U 2 = tat A, [b] = [l], ~] = [l-1] 

The slip direction is necessarily always parallel to the Burgers vector of  
the dislocation responsible for slip (Hull and Bacon, 1984). This suggests 
that a local generalized translation [in the teleparallel space (~,  Va')--see 
the commentary following equation (32)], parallel to the local Burgers 
vector b may be considered as the example of a local slip in the continuized 
dislocated crystal. Note that such local slips preserve the property of lattice 
lines (in a continuized dislocated monocrystal--Sect ion 1) to be do- 
geodesics as well as preserve [up to the affine transformation (20)] an 
internal length measurement along these lines (Section 2). Since (Yano, 
1958) 

B A LeA=--e bB 
a (73) 

b]  = V ]b  8 + bCvcA n, ~:AB c = gCDgaEreBn 

we obtain, taking into account equations (23b), (29)-(31),  (45), (66), (67), 
and (73), that 

1 B V~b s = e A c n b c y  on ~tab 
(74) 

tAbA = O, ta = OMP 

The dislocation density tensor a of  a uniformly dense distribution of 
dislocations is a dO-parallel tensor field [i.e., ~,b =cons t  in equation (5)]. 
Therefore, the vector field v = pb defined by (66) with 1 being a do-parallel 
vector field should also be do-parallel, and then [see equation (14a)] 

V]b B = -�89 B 
(75) 

= 2 ln(p/po), V*I = 0 

Finally, in this case, we obtain from equations (14b), (74), and (75) 
that slip surfaces ~p = const defined by the conditions 

OA (~P - ~) = 2eaco 1~ c]) oB/~ n 

flaOA~p = O, pb = x = const (76) 

fla = bA/b, jff A = ganlffn, b 2 = gABbab n 

admit local slips of  the considered type. In particular, for the distribution 
of  edge dislocations defined by (55), these slip surfaces are defined by 

~p = 2 ln(p/po) (77) 
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Thus, in this case, we can compute the scalar density of dislocations p from 
equations (69) and (77) and the modulus b of the local Burgers vector from 
(72). 

5. FINAL REMARKS 

It follows from equations (41) and (42) that, for a uniformly dense 
distribution of dislocations with rank y = 2, the pair (7, t) can be treated as 
defining a Galilei-like structure in the Riemannian space (8,  g) that is 
endowed with the covariant derivative V = (F~c) [see (25)] as the so-called 
symmetric Galilei covariant derivative (e.g., Kfinzle, 1972). The maximal 
integral manifolds of this Galilei-like structure have the form ~0 = const 
[equation (45)]. The general symmetric Galilei-covariant derivative is 
defined by the conditions (41) and (42) with a (symmetric) covariant 
derivative V = (F]~c) instead of V, and has the following form (Kiinzle, 
1972): 

F~c = FAc + 7a~ 
(78) 

7 Ants = 0, rank Y = 2, [)CAn] = [/] 
I A ~__ where Z = S z A n d X  ^ dX  n, )L~n - ) ' h a ,  is a 2-form, and the condition 

(44) is fulfilled. The covariant derivative V defined by (78) admits #0 
[equation (39)] as an invariant volume 3-form [i.e., the condition (40b) 
with V instead of V is fulfilled]. 

The conditions (17), (21), and (26) for agreement between an internal 
length measurement and affine intervals along V-geodesics are valid for all 
symmetric covariant derivatives (Bradfield, 1990). In particular, for the 
Galilei-covariant derivative V defined by (78), we have 

Vcgan = QcAn - MCAB 

Mcan = 2Nc~am (79) 

AD t N~c  = ? XmB c), Ncan = gnoN~A 

where Qcan is given by equations (22) and (23), and thus these conditions 
reduce then to the condition [cf. equation (26)] 

(QcA n - Mca n)v Cv a v n = _ McA n v Cv av n = 0 (80) 

which is fulfilled for the vector field v A tangent to a V-geodesic [equation 
(17) with F]~ c instead of f'~c] iff any of the following conditions is fulfilled: 

?anvn = 0 (81a) 

XABv n = 0 (81b) 

tar A = 0 (81c) 
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where vA = g A r y  B. Any of these conditions ensures the existence of  a 
distinguished consistency direction between an  internal length measurement 
and the Galilei-like structure. For  example, if [cf. equations (18) and (20)] 

tA : #nA, v A = an a, nA nA = 1 
(82) 

[nA] = [n A] = [a] = [1], [~1 = [ l - ' ]  

where kt and a are positive constants, then the unit vector field n A defines, 
according to equations (33) and (81a), the consistency direction and can be 
considered as a counterpart  of  the so-called timelike vector field. Moreover,  
a coordinate system in which the representation (48) (with s = 2) of  the 
tensor field ? holds and nA = 6 3 defines the so-called adapted coordinates 
(e.g., Kfinzle, 1972). 

We see that the geometry associated with a uniformly dense distribu- 
tion of dislocations (with rank 7 = 2) defines a foliation of  the material 
space (~,  g) consisting of  slip surfaces in like manner as a Galilei structure 
defines a foliation of  the space-time consisting of  its spacelike subspaces. 
Note that a slip plane normal to the t direction [equations (66)-(68)]  can 
be considered as a local glide plane,  that is, a local slip plane in which a 
(local) translational motion (called the glide motion) of  a dislocation 
occurs (Hull and Bacon, 1984). In this case, surfaces of  the Galilei-like 
foliation are those that admit a glide motion of dislocations [see also the 
commentary  preceding (73)]. Therefore, the analogy with a Galilei struc- 
ture of  the space-time has a geometrical as well as a dynamical meaning. 
The consequences of  this analogy will be studied elsewhere. 
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